2.6 Inverse chi-squared statistic

Our starting distribution is the Gaussian

$$
\operatorname{prob}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

and so for n data X_{i} we have the posterior distribution for μ and σ

$$
\operatorname{prob}(\mu, \sigma \mid \text { data }) \propto\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[-\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \operatorname{prob}(\mu, \sigma) .
$$

There are reasonably strong theoretical arguments for taking the combined prior for the location and scale parameters to be the Jeffryes prior (see Lee, 1997)

$$
\operatorname{prob}(\mu, \sigma) \propto \frac{1}{\sigma}
$$

with obvious caveats about the divergent nature of the distribution.
Given this, if we wish to know the posterior distribution of the mean without regard to the possible values of σ, we may simply marginalize it out:

$$
\operatorname{prob}(\mu \mid \text { data })=\int \operatorname{prob}(\mu, \sigma \mid \text { data }) d \sigma
$$

A neat trick to tidy up the expression is to use

$$
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=S+n(<X>-\mu)^{2}
$$

where

$$
S=\sum_{i=1}^{n}\left(X_{i}-<X>\right)^{2}
$$

and the angle brackets denote the simple arithmetic mean of the data.
The marginalization is now a standard integration (change variables to $u=1 / \sigma$) and we find that

$$
\operatorname{prob}(\mu \mid \text { data }) \propto \frac{1}{\left(S+n(<X>-\mu)^{2}\right)^{n / 2}}
$$

which shows clearly how the most probable value of the mean concentrates near the arithmetic mean; the scatter in the data, which must diminish this, appears in the number S - and the parameter σ has of course vanished. This is very close to a standard tdistribution, which as we will see in Chapter 4, turns up naturally when we examine differences of means.

By the same methods we can eliminate the parameter μ, marginalizing it out to obtain

$$
\operatorname{prob}(\sigma \mid \text { data }) \propto \frac{1}{\sigma^{n+1}} \exp \left[-\frac{S}{2 \sigma^{2}}\right] .
$$

This has the form of an "inverse chi-square distribution", meaning that changing variables to $u=1 / \sigma$ will give a standard chi-square distribution. As in the previous case, we see that the "nuisance parameter" (μ this time) has conveniently vanished, its effect being mediated through the number S again.
In fact the two important numbers S and $<X>$ tell us everything we need to know about the data. They are called sufficient statistics, and we will meet them several times in the next Chapter for this reason.

